NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Command and Control Data Dissemination Using b
IP Multicast
by
Raymond C. Barrera

December 1999

Thesis Advisor:

Bert Lundy
Second Reader:

John Iaia

~Approved for public release; distribution is unlimited.

T 20000417 187

REPORT DOCUMENTATION PAGE ~ Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. -

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1999 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Command and Control Data Dissemination Using IP

Multicast

6. AUTHOR(S)
Barrera, Raymond C.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) %R'(’;';':g:#g‘f REPORT

Naval Postgraduate School NUMBER
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unllmlted

13. ABSTRACT (maximum 200 words)

Tools have been developed which allow tactical data to be exchanged over Internet
Protocol networks, but the quality of service necessary to operate these tools is not
available for most Naval vessels at this time. The objective of this thesis is to show
that using Multicast IP, distributing data in layers using an efficient protocol, and
sending data with no inherent mechanism to ensure that packets arrive at their
destinations will allow data to be exchanged over IP networks at much lower bandwidths
than is required today while still maintaining a common tactical picture. Software was
developed which interfaces to GCCS-M and exchanges data over a multicast network. This
software was tested in a laboratory which simulated a Naval enviromment. The results of
testing demonstrate the potential of using the characteristics of the track data being
exchanged in a true multicast architecture to develop a efficient tactical data
distribution system for users operating in the Naval environment.

14. SUBJECT TERMS 15. NUMBER OF
multicast, command, control, communlcatlons, common PAGES 88

operational picture

16. PRICE CODE

17. SECURITY CLASSIFICATION OF | 18- SECURITY CLASSIFICATION OF | 44 gpcyRITY CLASSIFICATION OF | 20: LIMITATION
THIS PAGE OF ABSTRACT

REPORT Mgl fied ABSTRACT

Unclassified nclassitie Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS1 Std. 239-18

ii

Approved for public release; distribution is unlimited

Command and Control Data Dissemination Using IP Multicast

Raymond C. Barrera - SPAWAR Systems Center, San Diego
B.S., California State Polytechnic University, Pomona, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL: POSTGRADUATE SCHOOL
December 1999

-7
Author: /<j;;wwn°4/24< /;gizeaaﬂz

Raymond C. Barrera

Approved z§22/éfi

by:
Y Bert Lundy, Thzéfsfﬁavisor
(;éﬁﬁ(aia, Second Reader

v |
DAN BOGER, ngzRMAN
DEPARTMENT OF COMPUTER SCIENCE

iii

iv

ABSTRACT

Tools have been developed which allow tactical data to
be exchanged over Internet Protocoi networks, but the
quality of service necessary to operate these tools is not
available for most Naval vessels at this time. The objective
of this thesis is to show that using Multicast IP,
distributing data in layers using an efficient protocol, and
sending data with no inherent mechanism to ensure that
packets arrive at their destinations will allow data to be
exchanged over IP networks at much lower bandwidths than is
required today while still maintaining a common tactical
picture. Software was developed which interfaces to GCCS-M
and exchanges data over a multicast network. This software
was tested in a laboratory which simulated a Naval
environment. The results of testing demonstrate the
potential of using the characteristics of the track data
being exchanged in a true multicast architecture to develop
a efficient tactical data distribution system for users

operating in the Naval environment.

vi

TABLE OF CONTENTS

I. INTRODUCTION : 1
A. OVER THE HORIZON = TARGETING......ccceeceruirreerrenerenssssesaneseessessesssasasassssssessssssassssassessssssssssessssssaenses 1

B. NAVAL COMMUNICATIONSccoviuitiminiruimiissesescssstsassssentstssssessesssesrsssssssast s sesssasssssesesessonessssanenassasant 1

€. OBIECTIVES ..ttuieriniirertiriinsenitesnesesesisesie et et sess b sss st sss b et sas st sa s bes b s as b s asasshssn s shoss b e sasatantnsensenin 2

D. SCOPE, LIMITATIONS, ASSUMPTIONSccccevverrerrersiersissessseessessesssesssessasessassssesssssssssssssssessenssasssernssnes 3
II. MULTICAST 5
A. MULTICAST VS UNICAST ...eceeeeeeeeeenresteseeessesssessessessressessssssesssessassssasssessssssssessessssssnssensessessssssnsnssense 5

B. IP MULTICAST BASICS....uiioirerieietisterrertsrerstsestnstesssarassssssssasssssasasssssassssasssassassessssssassessessssnssnssnsren 7

C. ROUTING weeerereriniesvasneestsssussssosesesssessanorsessessmassarsasstssssessessesssasssessssssaasssesessessesssssssesssaessassssassnssesnsesss 9

Lo DVMRP ...ttt ettt e b et b e et p ettt e et na s tens 10

2. PIM SPAFSE ...ttt ettt e e et e a s 10

D. RELIABLE VS UNRELIABLE.c.cecstreitteneinreroreesnisasssnsessasssssesesssaesssseessssasesssesassasnsseasasessssasensasennes 11

1. Reliable protocols.............ecouieomieiarniceiineneenisonienisnennneas Letrussre ettt a b re e esesenessestnaens 11

2. UNreliable PrOTOCOISccccouiiiveeieiirieieseeeeireet ettt ettt ettt e s e eane 12

III. NAVAL COMMUNICATIONS 13
A. NAVY LEGACY COMMAND AND CONTROL CAPABILITIES.......ccccererumreereceenrenes e 13

1. Battle Group Data Base MANGQEMENL.................ccoeerereeremeeiiniieceeaneenieeceeseeneesitenesseestesasseesseens 13

2. MESSAGING. ..ottt ettt st sttt n ettt st et eanen 15

3. OTCIXS .ottt ie st aa et s a bbb e s s sat st e s e s ess st et e et esssns et et essasseseseseeneaeenas 16

4. Track Data from OtREY SOUFCES...........o.cueuiveerrseeresisiesiesetesiseese s ie e e s be b eaesta st estn e s e esanee s enn e 17

B. CURRENT IP CONNECTIVITY TO SHIPSccouveueereeurersirseesseesresssessaressesssesnsessnsessesssessasessessasssessessnsennns 18

1. TYPES Of RF COMMECHIVILY......cuuinicceiiieiceet e een et en st 18

2. Sources of errors 0n Naval IP BEIWOTEKScccieiieecereiirecrinsceee e et s e e e sas e 19

30 EMUOON ...ttt sttt bbbt b v et et ee s e nnanas 20

C. GCCS-M APDS..coiiierenereerencaresresesesisassacsereesenssessssasasasestssasessasssssaessssasssssassensosessssessasasssassasesessans 20
IV. PROTOCOL DESIGN GOALS 21
A. DATA BASE CONSISTENCY ...ccoiiiuiiimrnireesitesesentoseasseassrenssessassessesessssacssentesessessssanesentrosssssessencasosans 21

B. BANDWIDTH CONSTRAINTSooviiititiiniinintcsisesistas st easssassesaneasassaessesnesssnsssestnssesessssnssessassensases 21
C. PROTOCOL CONSTRAINTS ..c.ereveerreeeeeeriasssteiesreeesesasssesssssssssassnessssoseseerssssasessssssasassssssassosssssssssasanne 22

D. PROTOCOL DESIGNuucirieesiueeiecrsesasseesnsessssessressessssessssssssessassssesssssssssssssssssssssesssssssesasasssassssesssnssnsnn 23

E. COMPRESSION METHODS ...cc.uvcetieriesererisssesssecessesssesssessssssssassssasssasesssssssssssassasessasassasssasesssssssssasssnsenns 25

F. SPREADSHEET SIMULATION.cctietieueastereeieseaassessssasseesssasssarsessasssseessnsssssasasessassasessessasasarasssassssassns 29

V. TEST METHODOLOGY 35
A. TEST ARCHITECTURE ...ccccittirereierrnessererosranstesasaassessssnsssasssssessssssssssssasasssassassasssnsesasntasessasssssennsesssesen 35
VI. RESULTS 37
A DATA COLLECTEDttteieittreeteerssaresaaeessserassssesesssesssrssesssssassssesessssssssssssssessessssesssnsassssssssasansssssenans 37
VII. CONCLUSIONS 41
VIII. RECOMMENDATIONS 43

vii

APPENDIX. SOURCE CODE 45
A. UMGOOP _MAIN.C..oooooveereememermoeeressssssesesssssssssssssssssssssssessssssssssesesssssssssssssssssssesessmsessesessosssssssssessess 45
B. EVENT QUEUE.H..cssueeuemueiuerunesssssessssssssssssssssssassssssssssnsssassssessssssssssnssssesssssansssssssassssssssssssnssssassaese 51
C. MESSAGING.C coveeevenrereereetnrerereereinsteseesssesseesessssssossssasessesassssssesesessnssassssassassansssssssssssessesassnssassesssansans 53

REFERENCES B

BIBLIOGRAPHY 75

INITIAL DISTRIBUTION LIST 77

viii

ACKNOWLEDGMENT

The author would like to acknowledge the support of the
Over The Horizon - Targeting Program at SPAWARSYSCEN San
Diego for their support in facilities at the Reconfigurable
Land Based Test Site (RLBTS) and guidance in the development

of this thesis.

Cix

I. INTRODUCTION

A. OVER THE HORIZON - TARGETING

The advent of the cruise missile required the US Navy
to develop mechanisms to exchange Over The Horizon
Targeting (OTH-T) data in order to empioy the missile
against targets beyond the range of the weapons platforms'
sensors. This led to.the establishment of Battle Group Data
Base Management (BGDBM) which used OTH-T GOLD (OTG) text
messages transmitted over the Officer in Tactical Command
Information Exchange Subsystem (OTCIXS) to maintain a Common
Operational Picture (COP) between participants within a
battle group. OTCIXS is an Ultra High Frequency Satellite
Communication (UHF SATCOM) network with a channel access
protocol designed for a low number of users. Messages
transmitted on OTCIXS are acknowledged by a single net
controller rather than by the intended recipient;
consequently the message delivery path is inherently
unreliable. The effective bandwidth of OTCIXS is less than
600 BPS. This mechanism has been used for over a decade
by shore sites and surface combatants at both the force and

unit levels, as well as submarines and some aircraft.

B. NAVAL COMMUNICATIONS

The Advanced Digital Networking System (ADNS) and its

predecessors provided IP connectivity over SATCOM to afloat

units at the SECRET and UNCLAS levels. This allowed the use
of Common Operational Picture (COP) software within the
Global Command and Control System - Maritime (GCCS-M) to use

TCP/IP connections to exchange data between force level

ships and shore. This software evolved into the COP
Synchronization Tools (CST) segment on GCCS-M which
exchanged tactical data over IP networks. In order to

address the serious bandwidth limitations of Naval ships a
Multicast IP protocol was developed as part of the CST.
This is a reliable protocol at the application layer. The
database consistency is managed through a hierarchy of
participants. Transactions are propagated throughouﬁ the
entire network. This software still requires minimum
available bandwidth on the order of 16-32 KBPS for each
user. This quality of service is difficult to provide on

unit level ships.

c. OBJECTIVES

Given the ability to operate on OTCIXS with multiple
users it appears intuitive that a single user should not
require an order of magnitude greater bandwidth than the
entire theater requires on OTCIXS. The current CST software
adds the ability to manage a great deal more data than
OTCIXS and provides a reliable protocol to exchange data.
This should ensure that databases replicated using CST on

high bandwidth links should be identical. The objective of

this thesis is to show that using Multicast IP, distributing
the data in layers using an efficient protocol, and sending
data with no inherent mechanism to ensure that packets
arrive at their destinations will allow data to be exchanged
over IP networks at much lower bandwidths than is required

today while still maintaining a common tactical picture.

D. SCOPE, LIMITATIONS, ASSUMPTIONS

Although software is being developed for this thesis
which allows the exchange of tactical data through IP
Multicast, it is not intended to be a deployable system.
Since the focus of the thesis is to measure the bandwidth
savings and data base consistency only software which
supports these functions is being developed. Additional
software would be needed to support fielding of similar
functionality. This would include functions such as an
enhanced operator interface, session control and
announcement capabilities, and enc:yption techniques to
verify the senders' identity and assure need to know.

The testing is being done on a network of Cisco routers
using PIM-Sparse IP multicast routing. It does not take
into account the effect of ATM switches or ADNS Proteon or

Bay Networks routers using DVMRP.

THIS PAGE INTENTIONALLY LEFT BLANK

IT. MULTICAST

A. MULTICAST VS UNICAST

Multicast IP networking was proposed in Internet
Engineering Task Forces (IETF) Request For Comment (RFC) 966
written by Steve Deering and Dave Cheriton in 1985. Since
then, several RFC's have been developed to describe the
Internet Group Management Protocol (IGMP) and the necessary
routing protocols to support Multicast IP. The concept of
multicasting gained strength after the development of the
Multicast Backbone (Mbone) in 1992. The Mbone provides a
development environment to explore new designs and
applications before these new concepts are adopted and
deployed by commercial wvendors.

Most applications that operate over Wide Area Networks
(WANs) send data to each user in unicast packets to the
users individual address. This results in many similar
packets sent over the same network 1link, and increased

bandwidth requirements near the data source as in Figure 1.

Computar

Figure 1 : Unicast Data Flow

Some'local area network applications reduce bandwidth
by broadcasting data on the LAN to all hosts on the network
at one time (Figure 2). Multicast IP provides a mechanism to
reduce the bandwidth required to send the same data to
multiple hosts while restricting the dissemination of that

data to interested participants.

Figure 2 : Multicast Data Flow

Typical applications that transmit data over the
Internet today use either User Datagram Protocol (UDP) 6r
Transmission Control Protocol (TCP) as the transport layer
protocol. UDP is a connectionless protocol which allows
individual packets to be transmitted over the Internet
Protocol (IP) in an unreliable manner between hosts.
Because it is connectionless, it can be scaled easily to be
addressed to broadcasts or multicasts. TCP is a reliable,
connection-oriented protocol that ensures that packets can
be reassembled without error in order to ensure a stream of
data between a pair of hosts. It provides error checking, a
sliding window of acknowledgments, flow control, and
retransmission of data to ensure reliable transmission.

Applications built on the transmission of UDP packets
tend to be easier to adapt to multicast than those utilizing
TCP are. There is currently no standard for ensuring
reliable transmission of data to a multicast groups. There
are several proposed.which will be discussed later in this
. paper. Often it 1is difficult to scale the design of an
application that relies on reliable transmission of data to

multicast.

B. IP MULTICAST BASICS
Multicast IP routes packets by sending them to hosts
that are members of a host group. A multicast group is

identified by a Class D IP address in the range 224.0.0.0-

239.255.255.255. These Class D addresses are not related to
the IP addresses of the hosts that make up the group. Hosts
indicate their interest in a group by using the Internet
Group Management Protocol (IGMP). Hosts generate Membership
Reports that are sent to a nearby router requesting to join
a host group. The router will periodically query for at
least one host in the local network that still wants to
remain in the group. If no hosts respond, the router may be
able to be pruned so that traffic for that host group no
longer passes through it. Beginning with IGMP version 2, a
host can explicitly leave a group.

Multicast IP, 1like the underlying IP protocol, is
inherently unreliable. Devices that pass Multicast IP
packets make a best effort to deliver them. Reliable
protocols that can be built on top of Multicast IP are
discussed in a later section.

Only a few well known globél Class D addresses have
been specified. The Class D address space is flat. It is
important for applications to manage Class D addresses
efficiently. They must wuse techniques for scoping the
distance multicast packets they generate can travel on a
network to avoid entering another network where the same
Class D address is already being used. Currently that is
done by setting the TTL of a packet. The TTL effectively
limits the number of hops an IP packet can travel before it

is rejected by a router. The TTL is used to avoid loops in

unicast routing that could cause a packet to travel forever.
When a unicast packet is dropped by a router, an error
message 1is sent back to the sender. No such message is
generated for Multicast packets that exceed their TTL. A
future method of controlling the dispersion of multicast
traffic will be to limit the packet's scope
administratively. It is impossible to determine the number
of hops necessary to reach all members of an enterprise
without going outside of the controlled network.
Administrative scoping will allow the restriction of packets

to a specified domain.

C. ROUTING

Multicast routing protocols establish a distribution
tree to route data to all members of a group in an efficient
manner. Two basic techniques are used to advertise the
groups to potential group members, dense mode and sparse
mode. Dense mode protocols flood the entire network with
advertisements when a source begins transmission and prunes
off connections which are not needed. These protocéls are
- best suited to networks containing a concentration of
members of a group with network resources not affected by
the addition of often unwanted data. Sparse mode protocols
are initiated from the receivers and thus only utilize links

which are required to access interested parties. These

protocols are wuseful over WANs which contain widely
dispersed group members and limited bandwidth. (Kosuir)

1. DVMRP

Distance Vector Multicast Routing Protocol (DVMRP) was
originally used to establish the Mbone. Routers using DVMRP
check the reverse path to a source when a packet is received
in order to determine if it came from the shortest path
between the source and the router. If it did, the packet is
sent to all other links. If it did not, presumably it is a
duplicate packet and it is discarded. DVMRP maintains its
own unicast routing tables to determine the reverse paths.
When a router has no attached subnets which want to receive
data sent to a group it issues a prune message to the next
router up the tree. This prune lasts for a limited time at
which point the subnet may receive flooded packets again.
When new members are added to a group graft messages can be

used to add a new section to the tree. (Miller)

2. PIM Sparse
Protocol Independent Multicast (PIM) -Sparse is
designated a “shared tree” protocol. This “shared tree”

refers to a common distribution tree for all members of a
group, regardless of their position relative to the source.
Within each subnet, a Designated Router (DR) sends requests
for any router in its subnet. Routers join a group by
sending explicit join messages to the group's Rendezvous

Point (RP). All of the data sent to this group passes

10

through the RP. Since the group may be widely dispersed,

this may result in a sub-optimal distribution tree. (Miller)

D. RELIABLE VS UNRELIABLE

As a transport layer protocol, IP Multicast by itself
is unreliable. That is, there is no inherent mechanism to
ensure that packets arrive at their destinations. Macker
(Macker 1996) describes a taxonomy of reliable requirements:

1) Best effort - similar to UDP in
which no guarantees are made
2) Absolute - Similar to TCP in which

all packets are delivered.

3) Bounded Latency - Each packet has a
useful lifetime.. After this time it may be
discarded.

4) Most Recent - Only the most recent

data is useful. In many command and control
applications the most recent tactical data
essentially supercedes all other reports.

1. Reljiable protocols

A survey of reliable protocols and their application to
military networking was performed by Petit (Petit 1996).
Since that time there has been significant work to address
some of the shortcomings of each protocol, but the fact
remains that there 1is not a single solution to reliable

multicasting for all applications.

11

In order for a ‘reliable multicast protocol to be
effective, it must be scalable. Simply applying the same
concepts used to develop TCP would result in a unmanageable
Ack implosions from a large group. Work continues in this
area to determine efficient methods of sending repairs,
dealing with late joiners, and handling asymmetric networks.

The Distributed Interactive Simulation effort
established mechanisms to transmit data to members of groups
participating in a distributed system. It has been
succeeded by the High Level Architecture for Simulation
(HLA) . Its work is being continued by the Large Scale
Multicast Applications (LSMA) group of the IETF. As the
purpose of these protocols is to distribute situational
awareness amongst the group members they are tackling many
of the same problems affecting command and control data
distribution.

2. Unreliable Protocols

Unreliable multicast protocols are simply streams of
UDP packets destined for a class D IP address. There is no
more than best effort to deliver the packets to all hosts in
the group as there would be for wunicast UDP packets.
Furthermore, due to the complexity of multicast routing
trees it is more likely to receive duplicate or out of orxrder

multicast packets than unicast packets.

12

IITI. NAVAL COMMUNICATIONS

A, NAVY LEGACY COMMAND AND CONTROL CAPABILITIES
1. Battle Group Data Base Management

In order to engage a target using an OTH-T weapon it is
necessary to know the location and movements of all contacts
in a large area. This requires the combination of data from
multiple sources.

OTG messages are used to distribute and manage data
from the originator's database. There is no single source
to get an overall picture for the Navy. Early OTH-T
experiments showed that it was important for all members of
a battle to have the same picture. This allowed battle
group commanders to make consistent decisions.

This consistent tactical picture is accomplished by
software which complies with the Battle Group Data Baée
Management (BGDBM) specification. BGDBM defines the roles
of Coordinator and Participant. The Coordinator provides
the overall track management of the battle group database.
The battle group database is a construction of the tactical
picture which can be viewed by any of the participants.
Participants provide inputs and receive direction from the
coordinator. In the original instantiation of BGDBM, all
data had to be sent from the Coordinator in oxder to be

processed by the Participant. This simplified track

13

management but reduced the timeliness of the data. This was
repaired by allowing the Coordinator to designate track
reports from a given source for a contact to be accepted by
the Participants.

Tactical data 1is exchanged wusing OTG messages
transmitted over OTCIXS. Since OTCIXS is inherently
unreliable, periodic SITREPs are transmitted by the
coordinator to the participants. The SITREP contains the
track number of each track in the database and the last time
it was updated. Each Participant compares this SITREP to
its own database. | When there are discrepancies the
Participant can manually request retransmission of missed
data. In short, rather than ensuring reliable delivery of
every transaction in the database, periodic SITREPs are used
to bring the databases throughout the battle group back into
synchronization. When latecomers join the group they are
tranémitted a data base dump which contains all of the
contacts being reported to the group along with their last
reported position.

This method of synchronization only supports updating
the current position at the time of the SITREP. Though it
is important that the currenE position be the same
throughout the battlegroup at any given time, it is also
important to keep track history points synchronized. OTH-T
weapons use the track history to project to movement of a

contact into the future. This is necessary to allow for the

14

long travel times of OTH-T weapons. Different track
histories can lead to different projections. In turn, these
different projections éan lead to different decisions on how
to employ or aim the OTH-T weapons.

2. Messaging

The Operational Specification for Over The Horizon GOLD
(0S-0TG) describes the formatted text messages used to
exchange non real-time tactical data. GOLD messages have
been used for over a decade in Naval tactical systems.
Originally, man-readable text messages were used in order to
be displayed on a teletype terminal. Messages are formatted
so they can be parsed automatically by tactical data
processors (TDP). Messages are used to pass contact
information and track management directives between TDPs.
Contact information consists of positional information,
attributes, and parametric information.

Contact attributes provide minimal identification
characteristics. The information supplied varies depending
on the type of contact and the sensor used to detect it.
These may include ship class, name, hull number, IFF code
and other discrete identifiers. The purpose of transmitting
these attributes is to uniquely identify a contact. It is
unnecessary to transmit redundant data once identification
has been made. In many cases additional data may contradict
previous reports and cause more ambiguity rather than

clarification.

15

Track management messages are used to pass database
transactions. No explicit creation messages are used.
Track deletion messages can be sent as well as merge
messages. Merge messages have the effect of joining data
from two track records in the track database. Tracks are
identified by a local track number assigned by the meséage
originator and transmitted in each GOLD message. The
originator can only update or manage data it has previously
sent.

Parametric data can be sent in GOLD messages to allow
sensor data to be processed at remote sites. Parametric
information may include Electronic Intelligence (ELINT)
frequency and spectral measurements and acoustic signature
data.

3. OTCIXS

The Officer in Tactical Command Information Exchange
Subsystem (OTCIXS) provides the current connectivity used to
exchange OTH-T data between Naval platforms today. OTCIXS
is a UHF SATCOM network which uses a slotted Aloha with
reservations random access protocol. It is managed by a Net
Controller which allows access to the net and acknowledges
every message it receives without error. Messages that are
not acknowledged are retransmitted by the originafor. All
receivers on the network receive all messages then apply a
filter based on destination addresses to reduce the amount

of data processed. The destination addressee must receive a

16

message without error at the same'time the Net Controller
does or it will not receive the message at all. Because
messages are only acknowledged by the Net Controller and not
the individual destination addressees the network is
unreliable.

The design of broadcasting all messages to all sites
and filtering on the receiving end'allows for a type of
multicast network to be established. All receivers
operating as a battlegroup accept traffic destined for a
multicast address for the battlegroup. Receivers in another
battlegroup would have their own designated address and
would ignore other battlegroub addresses. These multicast
addresses are used to exchange Battle Group Data Base
Management data between members of the battlegroup.

OTCIXS has additional characteristics that make it
suitable for the transmission of tactical data. It has the
capability to allow sites with higher precedence traffic to
be transmit before those that do not. It can allow
receivers to operate in Emissions Control states that do not
allow acknowledgments to be transmitted. It also provides
its operators enough insight into the transmission process
to troubleshoot problems when they occur.

4. = Track Data from other sources

Real-time organic contact data is shared between
platforms over one or more Tactical Data Links (TADILs).

Most prevalent in the Navy today are Link-16 and Link-11.

17

The TADILs often operate on Line of Sight radio equipment
and have protocols ranging from simplistic basic contact
data transfer mechanisms to very sophisticated protocols
allowing voice and imagery to be transferred with contact
data. These TADILs can provide updates on every track
reported on the link in each net cycle time which can vary
from a few seconds to a minute or more. Hundreds of tracks
can be reported on these TADILs. There are mechanisms being
Aexplored to extend the TADILs Eeyond Line of Sight using

satellite and landline connections.

B. CURRENT IP CONNECTIVITY TO SHIPS
1. Types of RF connectivity

The Automated Digital Networking System (ADNS) allows
IP connectivity through the available RF media through a
consistent interface. The quality of service afforded by
these 1links varies widely. Commercial SHF connections
typically provide the highest bandwidth and lowest error
raté available to ADNS. High access costs and limited
availability of terminal equipment constrain its use on
platforms which can support commercial SHF. DSCS SHF can
have limited bandwidth available for tactical data exchange
due to competition with other military requirements. .In the
case of either SHF the available bandwidth is related to
size of antenna located on the vessel, but typically between

64Kbs and 512 KBPS are allocated for tactical data exchange

18

and related applications' IP connectivity. In order to
avoid blockage of the antennae by parts of the vessel while
maneuvering the antennae must be located high on the ships'
masts. The size and weight of SHF antennae currently limit
their use to iarge ships. A future capability provided by
INMARSAT B may allow smaller ships to have IP connectivity
ét 32Kbs rates.

In addition to the relatively high data rates SHF
provides Navy platforms, other military channels provide
minimal IP capabilities when SHF is not available. These
include UHF SATCOM, UHF DAMA, and EHF. Future capabilities
based on GBS broadcast technology are currently being
tested. This would alloQ an asymmetric connection with high
bandwidth from shore to ship while a slower backchannel from
ship to shore completed the connection.

2. Sources of errors on Naval IP networks

Any protocol designed to support tactical data exchange
between Naval vessels needs to withstand errors which are
peculiar to shipboard environment. One typical problem is
antenna blockage. This can lead to connectivity disruptions
lasting from minutes to hours depending on maneuvers.
Another is the effect of low look angles toward geo-
synchronous satellites from high latitudes ships often
operate in. The low look angles lead to additional errors
caused by thermal radiation from the earth, increased

atmospheric interference, and increased distance traveled.

19

3. EMCON

One shipboard condition not typically found in the
commercial sector is restrictive emission control (EMCON) .
In order to reduce the chance of detection a ship may avoid
the use of transmitters which do not have a low probability
of intercept. This condition is commonly found on
submarines. This severely reduces or eliminates altogether

the available bandwidth from the platform to other sites.

c. GCCS-M API’S

The Global Command and Control System - Maritime (GCCS-
M) provides a software development environment uéed to
create applications which wutilize tactical data. This
environment includes a set of Application = Programmer
Interfaces (APIs) which provide an interface to the Tacticél
Data Base Manager, an application which maintains the
tactical database aboard a platform. These API's provide
notification when an event such as an update, new position,
or deletion occurs. They also allow applications to access
tactical data, provide updates, and manage tactical data
within the platform. The same set of tactical data is used

by all GCCS-M applications on the same platform.

20

IV. PROTOCOL DESIGN GOALS

A. DATA BASE CONSISTENCY

The purpose of this project is to provide a capability
which replaces the unreliable mechanisms available to the
users with limited IP bandwidth. It is expected that those
users which require high reliability will utilize the COP
Synchronization Tools which provide a reliable mechanism for
exchanging tactical data over IP networks. Therefore, it is
not necessary to maintain perfect synchronization between
participating sites. For purposes of design, we shall assume
é design goal of maintaining 95% of the tracks in the
database identical between the source of the data and any of
the receivers. This goal is selected based on experience
with current capabilities and the use of these'capabilities

by operators.

B. BANDWIDTH CONSTRAINTS

The goal of this protocol design is to support the user
with limited bandwidth. The heaviest load of input tracks
planned is from the organic tactical data links. These
links can currently operate at 9.6 KBPS. Therefore, the
desired bandwidth required should not exceed 9.6Kbs. This
bandwidth will most likely be shared by other applications.
This may 1lead to periods of time when the available

bandwidth is not sufficient for the track update load. When

21

sufficient bandwidth is not available, the protocol designed
should allow for graceful degradation rather than
collapsing. For instance, if a reliable protocol were
designed and sufficient bandwidth were not available,
packets would monotonically become more timelate. As
tactical data can quickly become replaced by more useful
data, maintaining these o0ld reports in queues in order for
them to be reliably transferred would be counterproductive.
Attempts to add delays in between packets to allow for
queues in the transmission path only serve to reduce the
timeliness of the data while delaying the inevitable
breakdown of a reliable protocol on a 1link which cannot
provide sufficient quality of service to support the
reliable transfer of every packet in order with the same

amount of overhead.

cC. PROTOCOL CONSTRAINTS

The protocol designed should support all current
capabilities and those that can be foreseen in the near
future. In order to meet this requirement, all data fields
which can be stored in the TDBM should be supported by this‘
protocol. The protocol should be expandable in the future
while maintaining backward compatibility. All data 1is
expected to be transmitted in the message rather than

referring to lookup tables which can become obsoclete.

22

The protocol should operate under conditions common to
the Naval operating environment, namely significant error
rates, high latency, and restrictive EMCON settings. In
order to operate over these restrictive conditions while any
number of input data sources are updating the local data
base; the protocol used to transmit data from a site.should
not be directly slaved to the data base update events. That
is, the rate messages are transmitted from the node should
be independent from the events driving those messages.

It is assumed that the source IP address of a packet
unigquely identifies its source and no other unigue
identifier is required. This obviates the need for a user
to enter a unique host id. No attempt is made to
- authenticate the source of data at this time. The protocol
should support any number of sources and receivers in the
group. Althéugh it is intended for a battlegroup with only
5-10 nodes, it 1is conceivable that the same unreliable
protocol could be scaled to support a large number of users

interested in a particular data source.

D. PROTOCOL DESIGN

The protocol designed is based on the same mechanism
used to transfer tactical data using Battle Group Data Base
Management today. All members of the multicast group which
have data inputs transmit that data to the entire group.

Each member has control over the data it has provided to the

23

group. Messages are transmitted at a given broadcast
interval. Each message is transmitted without
acknowledgment. At a predetermined interval, Situation
Reports (SITREPs) are transmitted which contain a data base
dump of all contacts reported by that particular site. This
allows receivers to reconcile their database with the rest
of the group. Since occasionally messages will be
transmitted with errors over RF paths, presumably as time
goes on the number of messages received in error will be
monotonically increasing. Since the most important goal is
to maintain the most recent report on a given.contact, when
an update is received on a track without error that replaces
the previous report with errors, it has in effect repairéd
the error. If the number of updates is sufficiently large
in comparison to the number of messages received in error
the data bases will converge over time rather than diverge.
Since the recent track histo;y is important to calculate a
tracker solution, .occasional track history updates are
transmitted to the entire group. The SITREPs and history
all serve as redundant reports to replace any errors on
contacts without having to wait for an update. The advantage
of sending the history reports redundantly as a collection
rather than reliably sending each report is the savings on

overhead. The track reports can be sent more efficiently in

a gfoup than as individuals.

24

In order to transmit data more efficiently events are
queued until a minimum number of events are received, a
maximum timeout is reached, or the encoded message exceeds a
size threshold. This reduces the percentage of overhead
transmitted by combining many events into a single message.
The protocol should support layering of data by combining
data from multiple groups into a common picture.

Contacts in a data base are uniquely identified by the
source IP address and its associated track record number
key. This allows maximum flexibility without feqﬁiring the
management of andther unique identifier besides the host IP
address. Each event which causes a notification from the
GCCS-M TDBM API is keyed to the track record number. This
number is in turn used to identify a slot in a message
containing events for that track. These events can include
updates, new reports, deletions, etc. Each of these is
queued until a message is transmitted. 4The.receivers then
process the events in a similar manner to those received

locally.

E. COMPRESSION METI-_IODS

In orxrder to transmit data redundantly while operating
over bandwidth-limited connections it is necessary to
minimize the size of messages used to transfer data. The
size df the record used to store the track which contains

all of the data which may be transmitted is approximately

25

1200 bytes. As a first step, only fields which typically
hold data were transmitted. This reduced the amount of data
transmitted by nearly half. A further attempt was made to
establish default values for all of the fields in the data
structure. When the value stored was the default, a flag
was set in the message indicating the field was not being
sent and the receiver assumed the default wvalue. In
addition, fixed length strings were converted to variable
length and only the amount of the string containing data and
a null terminator was transmitted. These reduced a typical
update message on a contact from 1200 bytes to fewer than
300 bytes. The driving design factor has been to support
the injection of organic track data into the COP. Organic
track reports were reduced to fewer than 200 bytes. This is
consistent with the fact that Link-11 tracks contain a
limited amount of data.

Given the reduction in message sizes by simply sending
fields that had data it was unnecessary to employ more
radical compression methods. Rather than simply randomizing

the data, if compression was necessary some assumptions

about the data can be made. For instance, a time is
associated with every report. This time is typically
reported as the number of seconds since Jan 1, 1970. This

requires a long unsigned integer to store the number of bits
necessary to report such a high number. However, knowing

that most of the reports in a message are going to be

26

recent, the number of seconds before the generation of the
message could be reported. Thus, the message generation
time could be reported, then a smaller field used to report
the offset between the time of event and the time of the
message for each report contained in the message. A similar
method could be used for position reporting, where the
offset from a reference point is reported rather than
absolute 1latitude and longitude. The values of these
savings are nmltipliéd if they can be applied to multiple
reports in a single message.

Another mechanism that can be employed is the use of
hash tables to encode commonly used fields. For instance,'a
sensor table could be transmitted within the message. For
each report in the same message, an index to the'senSOr
table couid be transmitted rather than the string used to
describe the sensor.

Given that there is some predictability to the data
Huffman encoding could be used to further compress some
fields. Going back to the sensor example, the most common
sensor reported may be GPS. The next most common may be
NTDS. A Huffman table can be created in which 1 bit is
. required to send GPS, two is required for NTDS, and the
number increasing until the least 1likely sensor may take
more bits to report using the tables than to explicitiy

report the sensor. The savings come in compressing the most

27

commonly used values. A mechanism for sending any
unforeseen values in strings should be kept available.
Though not strictly a compression method, a system of
layering data allows only the data which the receiver
whishes to accept to be transmitted. This is implemented by
establishing filters on the data sent to each group. Each
group represents an orthogonal set of track data. By
combining these layers the entire track picture is created.
This scheme has been used to transmit interlaced motion
imagery data, with the basic picture going to a group,
additional detail going to another group, and increasing
higher resolution to other groups. The receiver can then
select which groups to subscribe to in order to receive the
resolution desired. Presumably, multicast routing
mechanisms are in place to prune off any undesired groups.
In the same manner a set of high interest tracks may make up
the essential group with higher resolution data being sent
to other groups. The group members caﬁ then individually
subscribe to the groups that interest them. The end user
can then control the amount of data being sent to them

rather than relying on a “smart-push” to select which data

they want to receive. ©Note that simply moving the receiver
from one group to another may not have the same effect.
Given that there is typically a lag between the last host no
longer requesting data for a group and the time the group is

actually pruned from local routers, a user attempting to

28

drop from a high fidelity group to a lower one may
experience even worse performance while subscribing to both

groups until the higher one is pruned.

F. SPREADSHEET SIMULATION

A spreadsheet simulation of the effects of message size
on messages received in error was used to gauge the
approximate message size needed to maintain a common data
base for a given percentage of the time.

' The test set planned to be used to inject data into the
experimental network updates Link-11 tracks on the average
twice a minute, so this value was used for the spreadsheet
simulation. The spreadsheet formulae determined that the

databases were consistent (“in sync”) if the receiving node

had latest update of tfack. Therefore a lost packet was
repaired if a subsequent message was successfully
transmitted. A sample run of the spreadsheet scenario is
shown in Table 1 for messages of 250 bytes long with update
times of twice a minute, operating on a communications link

with random errors of 1x107° errors/bit:

Table 1 : Message Transmission Scenario

Time Msg Transmission Cumulative total Cumulative Cumulative Percentage
: Errors time Time in Sync Time in of Time in
Error Sync

1 Message #: 1 0 1 1 0 100%

1.1 | 0 1.1 1.1 0 100%
1.2 | 0 1.2 1.2 0 100%
1.3 | 0 1.3 1.3 0 100%
1.4 | 0 14 1.4 0 100%

29

[NS (R (L L N

N
NaNOONO O,

NN
w

24 |
2.5 Message #: 3
26 |
2.7 |
28 |
29 |
3 |
3.1 |
3.2 |
3.3 |
3.4 Message #: 4
3.5Message #: 5
3.6 |
3.7 |
3.8 |
39 |
4 Message #: 6
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
4.9 Message #: 7
5 Message #: 8
51 |
52 |
5.3 Message #. 9
54 |
55 |
56 |
5.7 |

5.8 Message #: 10

I
I
I
I
.9 Message #: 2 Error
I
I
I
I

__;_;___\..._L__L__.L__x_______x__x___n__;___n__x_.\..x_x.__x..x_\oooo

w
o

-A-—L.—\.—L—L.—K—_\—-\—l-—\
N> ¢© 00 00 00 00 00 00 00 ~I O

MNP NNNNNN
OONOOOGTA WN -

oo ABABABARABRARADID DWWWWWWWW
NN OONDDTRWNDDROONDINDWOWN = w

100%
100%
100%
100%
95%
90%
86%
82%
78%
75%

76%

7%
78%
79%
79%
80%
81%
81%
82%
82%
83%
83%
84%
84%
85%
85%
85%

86%

86%
86%
87%
87%
87%
88%
88%
88%
88%
88%
89%
89%
89%
89%
89%
90%

59 |
6 |
6.1 |
6.2 |
6.3 |
6.4 |
6.5 |
6.6 |
6.7 Message #: 11
6.8 |
6.9 |
7|
71 |
7.2 |
7.3 |
74 |
75 |
7.6 Message #: 12
7.7 |
78 |
79 |
8 |
8.1 |
8.2 |
8.3 |
84 |
8.5 Message #: 13
8.6 |
8.7 |
8.8 |
8.9 Message #: 14
9 |
9.1 |
9.2 Message #: 15
93 |
94 |
9.5 |
9.6 |
9.7 |
9.8 |
9.9 |
10 Message #: 16

31

5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

71
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10

5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
9.4

0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

90%
90%
90%
90%
90%
91%
91%
91%
91%
91%
91%
91%
92%
92%
92%
92%
92%
92%
92%
92%
92%
93%
93%
93%
93%
93%
93%
93%
93%
93%
93%
93%
93%
93%
94%
94%
94%
94%
94%
94%
94%
94%

399.5 Message #: 738 22 399.5 388.1 11.4

399.6 Message #: 739 22 399.6 388.2 11.4
399.7 | 22 399.7 388.3 11.4
399.8 | 22 399.8 388.4 11.4
399.9 Message #: 740 22 399.9 388.5 114
400 | 22 400 388.6 11.4
400.1 Message #: 741 22 400.1 388.7 114
400.2 Message #: 742 22 400.2 388.8 114
400.3 | 22 400.3 388.9 11.4
4004 | 22 400.4 389 114
400.5 | 22 400.5 389.1 114
4006 | 22 400.6 389.2 114
400.7 | 22 400.7 389.3 11.4
400.8 | 22 400.8 389.4 11.4
Summary

Error rate 1.00E-05

Packet size 250

Total Number of Messages 742

Total Number of Messages 22

in error

Percentage Messages in 3%

Error

This example demonstrates how the picture converges
rather than diverges over time. After an early error on the
second message subsequent messages were received without
error and brought the current state of the receiver's
tactical data base to be consistent with the sender's. The
error caused a delay in synchronization, but the data bases
were inherently stable. The simulation was run several
times for various message sizes and the results recorded in

Figure 3 below:

32

7%
7%
7%
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%

Messages Received without Error by Message Size
10-5 error/bit

Figure 3 : Percentage Messages Received Without Error

These figures reflect errors on the line which may
eventually be repaired through the data link level protocol
used on the simulated satellite 1link. Therefore this
represents the worst case scenario with no error correction.
This chart indicates that a message size of approximately
200 bytes should be wused to maintain a succeésful
transmission rate of over 95%. This size is the design goal
of the transmission protocol for a single track update so
that it would be possible to generate messages this small

for testing.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

v. TEST METHODOLOGY

A. TEST ARCHITECTURE

A test network was established in a laboratory to allow
the software developed to demonstrate multicast data
dissemination in a realistic but controlled environment.
The GCCS-M nodes shown in Figure 4 were connected using
CISCO 2514 routers via ADTECH SX-12 Satellite simulators.
These allowed various bandwidths, delays, and random error
rates to be configured to characterize a transmission media.
The nodes represented a Commander, Joint Task Force (CJTF),
Aircraft Carrier (CV), Cruiser (CG) and Destroyer (DDG) .
The connection between the CV and CJTF was expected to be

relatively good compared to the unit level nodes. Available

TOP

REPEAT| P cop

z7 CJTF

P

cv
REPEAT P AcHILLES
R3

16 8

REPEAT —P cG DDG — REPEAT
R4 TORSO JANE Ré

Figure 4: Test Architecture

35

bandwidths of between 8-64kps were used on these links along

with a ‘consistent delay of 900 ms and random error rate of

1x10°° errors/bit.

PC's running the REpeatable Performance Evaluation
Analysis Tool (REPEAT) were used to inject track data
scenarios and to record track data broadcasts configured
with inherent GCCS-M functionality. Data recorded by
REPEAT was processed using the REPEAT message and contact
compare analysis programs. LAN traffic at the CV node was
recorded using a Network General Sniffer to independently

verify transmitted message and contents.

36

A. DATA COLLECTED

VI.

RESULTS

Data collected during the exchange of an unclassified

test set was used to calculate the performance of this

protocol.

updated approximately 2 times a minute.

show that the

This test

set contained 111 Link-11 tracks

attributes averaged 194 bytes.

than uncompressed CST messages

compressed messages.

size of a message to update

and 67%

The data collected

a track's

This message is 82% smaller
smaller than

The size of a message containing an

individual track report averaged 88 bytes. The sizes of the

components of a message used to transmit data are given in

Table 2.

Table 2 : Track Data Element Size

Component Average Max Min Std Dev
(bytes) (bytes) (bytes) (bytes)

Data 54 63 50 2.5

Header 61 61 61 0

Report 79 82 78 1.9

Total 194 206 189 4.3

Table 3 describes the size of messages transmitted from

the test node.

were transmitted from this node.

37

During the measurement period 200 messages

The message sizes ranged

from 24 bytes representing a message with no data to 1387

bytes, the maximum which can be sent with the configuration

settings used.

Table 3 : Messages transmitted from Test Node

Total Messages Sent 200
Average Total Message Size 1200 bytes
Max Total Message Size 1387 bytes
Min Total Message Size 24 bytes
Std Dev 296 bytes

Table 4 describes messages received by the test node
from other group members. The average message size from
other sites was smaller than those transmitted since the
test node had much more data to send and thus had fewer

small, empty messages to reduce the average.

Table 4 : Messages Received by Test Node

Total Messages Received 325 (10 missing)
Average Total Message Size 1105 bytes

Max Total Message Size 1387 bytes

Min Total Message Size 24 bytes

Std Dev 400 bytes

A Link-11 file containing 111 tracks was injected into

the CV node shown in Figure 4.

REPEAT XR devices recorded a

GENBCST from each of the members of the group to capture the

changing database as it was updated from the multicast

group.

In a five minute period 688 ‘updates were injected

38

into the CV node for 111 tracks. The timelate of the
reports was measured after allowing for the time necessary
for the data recording. This provided the average timelate

values for each of the nodes given in Table 5.

Table 5 : Event Timelate

Node A&erage Timelate (seconds)

cG |45
JTF | 47
DDG |56

These measurements indicate that the latency of organic
tracks remained Dbelow one minute in each of the
configurations tested. Given the characterization of the
test seﬁ it was calculated that 7600 BPS was required to
maintain the common operational picture. At 8000 BPS the
picture remained stable with all 111 tracks being held at
all sites. When the available bandwidth for one site was
reduced to 4800 BPS, the routers' serial interfaces toggled
on and off. This resulted in even lower throughput. The
insufficient bandwidth allowed only 95 tracks to be passed
on the multicast group after two minutes. Reducing the
bandwidth to only 2400 BPS allowed only 30 tracks to be
exchanged on the multicast broadcast. These results
demonstrated the desired characteristic of the multicast
dissemination profocol to gracefully degrade in harsh

conditions rather than coming to a complete halt.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

VII. CONCLUSIONS

Simulation results indicated that by reducing the size
of messages used to exchange track data, the data could be
sent often enough to maintain the desired 95% data base
consistency. Software to demonstrate this capability was
successfully developed and tested in the laboratory
environment. The average message used to exchange track
data was reduced to 194 bytes. This message is 82% smaller
than uncompressed CST messages and 67% smaller than current
compressed messages. The average report size was reduced to
88 bytes allowing track history to be sent efficiently.
These smaller messages, coupled with the reduced overhead of
an unreliable multicast transmission mechanism, allowed the
challenging Link data to be transmitted over an 8 KBPS link
with associated errors and delays. vIt is expected that
although other types of data may contain more attributes and.
therefore require larger messages, their update rates will
be considerably less than that of the Link-11 data used in
these tests. These results with relatively simple
optimization techniques demonstrate the potential bandwidth
savings possible by encoding data in a manner which takes
advantage of ©prior knowledge about the data Dbeing
transmitted.

Although no explicit mechanism was used to - ensure

individual messages were reliably exchanged, the effect of

41

updating older tactical data with newer reports was to
repair messages lost to error on transmission links. The
small message sizes allowed for occasional broadcasts of the
state of the entire track data base. These redundaﬁt
reports also helped maintain the common operational picture.

An architecture conducive to exchanging data with
multicast groups was utilized»for the software used in this
test. There are no restrictions on the number of members of
a group or the number of groups a host may be a member of.
These concepts are important if the ability to exchange
tactical data through multicast groups is to expand to a

global scale.

The results of testing of the software developed to
test the capability of transferring the common operational
picture using multicast groups demonstrate the potential of
using the characteristics of the track data being exchanged
in a true multicast architecture to develop a efficient
tactical data distribution system for users operating in the

Naval environment.

42

VIII. RECOMMENDATIONS

Although the results of this testing showed that taking
the characteristics of the data being transferred into
account when developing a communications protocol is a very
powerful tool, only relatively simple mechanisms were
implemented. In order to implement én effective protocol,
the entire data base structure should be considered. Other
encoding schemes described in section 1IV.E should be
examined. The rules governing thexuses of these compression
methods should be established in a manner allowing for
future systems to be backward compatible while promoting
growth in functionality.

The reduction in message size alone would have a
significant effect on the ability to exchange the common
operational picture, but implementing an unreliable
multicast mechanism would allow that picture to be sent to
many Naval participants which are unable to receive it now
due to insufficient bandwidth or asymmetric network
configuration. To support the disadvantaged users, the
capability to transmit and receive data on independent
groups which are joined at the receiver's request should be
established.

All of the concepts presented here ha&e been well known

for years. 1In order to support Fleet users, these concepts

43

should now be applied to specific Naval communications

environments.

44

APPENDIX. SOURCE CODE
The source code files which contain the significant
subroutines used to implement a test program to demonstrate
distribution of a common operational picture using multicast

are included in this appendix.

A. UMCOP MAIN.C

/***

* *
* PROGRAM: UMCOP *
* FILENAME: umcop_main.c *
* CREATION DATE: 01/12/99 *
* AUTHOR: Raymond Barrera *,
* CLASSIFICATION: UNCLASSIFIED *
* DESCRIPTION: Contains main routine for multicast COP *
* ¢ test program. *
**/

extern Event_Queue event_queue[],dump_event queue[];
int number of events = 0,number of dump events = 0;
int number received_events=0;

Event_Queue received_events{MAX_EVENTS];

extern int receive_message();

extern void parse_message();

extern void process_events();

extern int calculate message_size();

extern unsigned char ttl_value;

void main(int argc, char *argv([])

{

int irecord, /* ILOG record */
orecoxrd, /* OLOG record */
error, /* Error code . */
delay time = 0, /* Delay for reconnections */
interval = 30, /* Delay interval */
msg_delay = O, /* Delay for win updates */
event_cnt = 0, /* Event counter */
result; /* TDBM event poll result */
fd_set ifds, /* Active input fd set */
ofds; /* Active output fd set */
struct timeval timeout; /* Select timeout */
char file([80]; /* Email filename */
XEvent xevent; /* Next X event */
int broadcast_interxval 60*15;

int data_dump_interval = 60*60;

int max_events_in_message = 20;

time_t current_time, *tptr, last_broadcast_time=0,
last_data_dump_time=0; /* for testing, send dumps at startup. later
change to time program started */

45

unsigned long group_address;

int port number = 9123;

int socket;

Event Queue last_event;

int i;

int data_dump_in progress=0,last_trkrec_dumped =
0, number dump msgs_cycle=4;

int hlstory dump in_progress,history number;

FILE *fd; /* File descriptor */

char filename[32], /* File with PID info */
pid[16]; /* Process ID */

unsigned char *message_body;

int message_size,received size;
struct sockaddr in from ip;
unsigned char *received | _message;
Message_Header header;

int maximum message_size;

/* following for testing */

group_address = inet_addr("234.5.6.7");
broadcast_interval = 30;
maximum message size = 1500-780;

for(i=1;i<argc;i++) {

fprintf (stdout, "Group Address:

interval %d msgs cycle %d size %¥d TTL

$d\n", address_to_a(group_address),port_number,broadcast_interval,data_du
mp_interval, number _dump_msgs_cycle,maximum message_ size, ttl _value);

/*

* QOpen connection with TDBM

* Bring up the search window.

*/

VtInitSearchFilter (&filter);
VtEditSearchFilter (&filter, DEF_FLTR);

/*

* Clear the active file descriptor set, set up the set,
* and set up the timer for the select call.

*/

socket = initialize_socket(group_address,port_number);

initialize event_queue (event_gueue, &number_ of events);

1n1t1allze event_queue (dump_event_gueue, &number of events);

while (1)

{

/*

* Handle the track events. Up to 5 events are handle at a time.

* If an error is detected, reconnect to TDBM.
46

%s:%d broadcast interval %d data dump

*/
result = VtGetNextTdbmEvent (tdbm fd, &tdbm_event);
fprintf (stdout, "Result = %d\n",result); :
if (result == 0)

HandleTdbmEvents (tdbm_event);

}

if (result == ERROR)

{
fprintf (stderr, "Error returned from TDBM");
close_tdbm();
open_tdbm () ;

}

current time = time(tptr):;

if ((number_ of_events > max_events_in_message) | | ((current_time -
last_broadcast_time) > broadcast_interval) | | (maximum message size <
calculate_message_size(event_gueue,number of_ events))) {

#ifdef TESTING

fprintf (stdout, "Printing all events from main\n");
print_all events(event_gueue,number_of_events);
#endif

send_broadcast_message (group_address, port_number, socket, event gueue, numb
er_of events);
last_broadcast_time = current_time;
initialize_event_queue (event_queue, &number_ of_ events);

}
if((current_time -~ last_data dump_ time) > data_dump_interval) ({
data_dump_in progress = True;
last_trkrec_dumped = 0;
last_data_dump time = current_time;

initialize_event_queue(dﬁmp_event_queue,&number_of_dump_events);
#ifdef TESTING
fprintf (stdout, "Data dump intiated\n");

#endif
}
if (data_dump_in_ progress) {
for(i = 0; i< number dump msgs_cycle;i++) {
while (data_dump in_progress && (maximum _message_size >
calculate message_size(dump_event_ queue,number_ of dump_events))) {

add_track to_dump(last_trkrec dumped, dump_event_gueue, &number_ of dump_ev
ents});

/%
*/

number of dump events++;

last_trkrec_dumped++;
#ifdef TESTING
/*last_trkrec_dumped = MAXRECS; */
#endif
if (last_trkrec_dumped >= MAXRECS) ({
data_dump_in progress = False;
history dump_in_progress = True;
last_trkrec_dumped = 0;

}
#ifdef TESTING

47

fprintf (stdout, "data dump message being sent with %d
events\n",number of dump events);
#endif

send_broadcast_message (group_address, port_number, socket, dump_event_queue
,number of dump events);

initialize_event_queue (dump_event_queue, &number_of dump_events);

}
}
else if(history dump_in progress) {
for(i = 0; i< number dump msgs_cycle;i++) {
while (history dump_in_progress && (maximum message size >
calculate_message_size (dump event_ gueue,number of dump_ events))) {
whlle((hlstory number == O)&&(last_trkrec_dumped < MAXRECS))
{
#ifdef TESTING
' fprintf (stdout, "looking for history point in-
$d\n", last_trkrec_dumped);
#endif

get_next history point_ number (last_ trkrec _dumped, &history number) ;
1f(hlstory number == 0) last_ﬁrkrec_dumped++

}
#ifdef TESTING
fprintf (stdout, "using history point %d in

%d\n",history_number,last-trkrec_dumped);

#endif
if(last_trkrec dumped >= MAXRECS) {

history dump_in_progress = False;
last_trkrec_dumped = 0;

}
else {

#ifdef TESTING
fprintf (stdout, "adding history point %d in %d to

dump\n",history number,last_trkrec_ dumped);
#endif

add_history;point_to_dump(last_trkrec_dumped,history_number,dump_event;q

ueue, &number of dump events);
history number--;
if (history number <= 0) {
last_trkrec_dumped++;
hlstory number = 0;
/* number_ of dump events++ */

}
}

send_broadcast_message (group_address, port_number, socket,dump event_queue
;number of dump_events);

initialize_event_queue(duﬁp_event_queue,&number_of_dump_events);

}
}

48

received size =
receive message(socket &recelved | message, &from_ip, &header);

#ifdef TESTING
fprintf (stderr, "Received %d bytes\n",received size);

#endif
while (received size > 0) {
fprintf (stdout, "Received %d bytes\n",received_size);
fprintf (stdout, "main: From host:%s port:%d\n",
inet_ntoa(from_ip.sin_addr), ntohs(from ip.sin port));

parse_message (received message,received size, from _ip, header, recelved eve

nts, &number_ received |_events);
free(recelved_message);

process_events (received events, &number received_events, from ip, tdbm_f£d) ;
received size =
receive_message (socket, &received message, &from_ip, &header);

}
}
close_tdbm();

exit (0);

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

B. EVENT QUEUE.H

/***

* *
* FILENAME: "~ event_queue.h *
* AUTHOR: : Raymond Barrera *
* CREATION DATE: 01/12/99 *
* CLASSIFICATION: UNCLASSIFIED *
* DESCRIPTION: Contains structures used for TDBM event queue*
* 3
***/

#define MAX HISTORY 26
#define MAX EVENTS 1000

typedef struct {
int affected trkrec;
int deleted;
VtTrackDeleteMsg delete_event;
int merged;
VtTrackMergeMsg merge_event;
int reports_added;
VtTrackAddReportMsg add_report_events[MAX HISTORY];
int reports_deleted;
VtTrackDeleteReportMsg delete_report_events[MAX HISTORY];
int track updated;
VtTrackUpdateMsg update_track event;
} Event_Queue;

typedef struct {
int local_trkrec;
int group_owned_track;
unsigned long owner_ ip;
int owner_trkrec;

} Track_List;

typedef struct {
unsigned short int message_type:
unsigned short int msn;

} Message_Header;

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

C. MESSAGING.C

/******-k**********************************'k***************************

* *
* FILENAME: messaging.c *
* AUTHOR: Raymond Barrera *
* CREATION DATE: 01/12/9% *
* CLASSIFICATION: UNCLASSIFIED *
* DESCRIPTION: Contains routines for encoding and decoding *
* messages. *
* *
***/

#define SET_MASK(X,Y) X [= 1<<Y
#define MASK SET(X,Y) X & (1<<Y)

int encode_header (header, hdr ptr)
VtTrackHeader header;

unsigned char *hdr ptr;

{

int tmp_size;

unsigned int mask = 0;

int field = 0;

int size = 0;

unsigned char *ptr;

ptr = hdr_ptr;

tmp_size = sizeof(mask):;

memcpy (ptx, &mask, tmp_size);

size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (header.type):;

memcpy (ptr, & (header.type), tmp_size);
size += tmp_size; :
ptr += tmp_size;

tmp size = sizeof (header.trkrec);
memcpy (ptr, & (header.trkrec),tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (header.source);
memcpy (ptr, & (header.source), tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (header.assoc);
memcpy (ptr, & (header.assoc),tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (header.child);
memcpy (ptr, & (header.child), tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (header.machine);
memcpy (ptr, & (header.machine), tmp_size);

53

}

size += tmp_size;

ptr += tmp size;

tmp_size = encode_string(header.serial,ptr):;
size += tmp_size;

ptr += tmp_size;

tmp_size = 8;

memcpy (ptr, & (header.ltn),tmp_size);

size += tmp_size;

ptr += tmp size;

tmp _size = UID_TRIGRAPH SIZE;

memcpy (ptr, & (header. last _send_uid), tmp_size);
size += tmp_size;

ptr += tmp size;

tmp_size = UID_TRIGRAPH SIZE;

memcpy (ptr, & (header.rr uid),tmp_size);

size += tmp size;

ptr += tmp size;

tmp_size = 4;

memcpy (ptr, & (header.spare) ,tmp_size);

size += tmp_size;

tmp_size = sizeof (mask);
memcpy (hdr_ptr, &mask, tmp_size);
return(size):;

int decode header (header,hdr ptr)
VtTrackHeader *header;
unsigned char *hdr ptr;

{

int tmp_size;

unsigned int mask = 0;
int field = O;

int size = 0;

unsigned char *ptr;

ptr = hdr_ptr;
tmp size = smzeof(mask),
memcpy (&mask, ptr, tmp_size);
size += tmp size;
ptr += tmp_size;
tmp_size = 512eof(header—>type)
memcpy (& (header->type) , ptr, tmp_size);
size += tmp_size;
ptr += tmp_size;
tmp_size = sizeof (header->trkrec);
memcpy (& (header->trkrec) ,ptr, tmp_size);
size += tmp_size;
ptr += tmp size;
tmp_size = sizeof(header->source);
memcpy (& (header->source), ptr, tmp_size);
size += tmp size;
ptr += tmp_ size;
tmp _size = sizeof (header->assoc);
memcpy (& (header->assoc),ptr, tmp_size);
size += tmp_size;
ptr += tmp_size;

54

tmp_size = sizeof (header->child);

memcpy (& (header->child),ptr, tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (header->machine);
memcpy { & (header->machine), ptr, tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = decode_string(header->serial,ptr);
size += tmp_size;

ptr += tmp_size;

tmp_size = 8;

memcpy (& (header->1tn),ptr, tmp_size);
size += tmp_size;

ptr += tmp_size; -

tmp_size = UID_TRIGRAPH SIZE;

mencpy (& (header->last_send_uid),ptr, tmp_size);
size += tmp_size; ‘

ptr += tmp_size;

tmp_size = UID TRIGRAPH SIZE;

memcpy (& (header->rr_uid),ptr,tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = 4;

memcpy (& (header->spare), ptr, tmp_size);
size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (mask);
memcpy (hdr_ptr, &mask, tmp_size);
return(size);

int decode_string(string,ptr)
char *string;

unsigned char *ptr;

{

int tmp_size;

tmp_size = strlen((char *)ptr) + 1;
memcpy (string,ptr,tmp_size);
return (tmp_size);

}

int encode_string(string,ptr)
char *string;

unsigned char *ptr;

{

int tmp_size;

tmp_size = strlen(string) + 1;
memcpy (ptr, string, tmp_size);
return(tmp_size);

int decode_platform_data(data,data ptr)
55

VtPlatformData *data;

unsigned char *data_ptr;

{

int tmp_size,size=0;

unsigned int mask = 0,field = 0;
unsigned char *ptr;

ptr = data_ptr;

tmp_size = sizeof (mask);

memcpy (&mask, ptr, tmp _size);

size += tmp_size;

ptr += tmp_size;

tmp_size = sizeof (VtTrknum);
memcpy (&data->ftn,ptr,tmp_size);
size += tmp_size;

ptr += tmp_size;

/*
for (i=0;i<VT_MAX RTN;i++) {
tmp_size = sizeof (VtTrknum);
memcpy (& (data->rtn[i]), ptr, tmp_size):
size += tmp_size;
ptr += tmp_size;
}
*/

if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->shipclass,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->shipclass[0] = '\0';
field++; ,
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->name,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->name[0] = '\0';
field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->trademark,ptr);
size += tmp_size; '
ptr += tmp_size;
}
else data->trademark[0] = '\0"';
field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->type,ptr):;
size += tmp_size; ‘
ptr += tmp_size;
}
else data->type([0] = '\0';
field++;
if (MASK SET (mask, field)) {
tmp_size = decode_string(data->hull,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data=->hull([0] = '\0';
field++;
if (MASK_SET (mask, field)) {

56

tmp_size = decode_string(data->flag,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->flag[0] = '\0";
field++;
if (MASK SET (mask,field)) {
tmp_size = decode_string(data->sconum,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->sconum{0] = '\0';
«field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->pif,ptr);
size += tmp_ size;
ptr += tmp_size;
}
else data->pif[0] = '\0';
field++;
if (MASK_SET (mask,field)) {
tmp_size = decode_string(data->ntds,ptr):;
size += tmp_size;
ptr += tmp_size;
}
"else data->ntds{0] = '\0';
_ field++;
if (MASK_SET (mask,field)) {
tmp_size = decode_string(data->di,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data~->di[0] = '\0';
field++; ‘
if (MASK SET (mask,field)) {
tmp_size = decode_string(data->callsign,ptr);
size += tmp_size:;
ptr += tmp_size;
}
else data->callsign[0] = "\0';
field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->uic,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->uic[0] = '"\0';
field++;
if (MASK SET (mask,field)) {
- tmp_size = sizeof(data->quantity);
memcpy (&data->quantity, ptr, tmp_size);
size += tmp_size;
ptr += tmp_size;

}

field++;
if (MASK_SET (mask,field)) {
tmp_size = decode_string(data->home_base,ptr);
size += tmp_size;
ptr += tmp_size:;
}

57

else data->home_base[0] = '\0';
field++;

if(MASK_SET(mask,field)) {

tmp_size = sizeof (data->db_type);

memcpy (&data->db_type,ptr,tmp_size);

size += tmp_size;

ptr += tmp_size;

}
field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->db_num,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->db_num[0] = '\0';
field++;
if(MASK_SET(mask,field)) {
tmp_size = decode_string(data->alert,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->alert[0] = '"\0';
field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->fcode,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->fcode[0] = '\0';
field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->category,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->category([0] = '\0';
field++;
if(MASK_SET(mask,field)) {
tmp_size = decode_string(data->threat,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->threat[0] = '\0';
field++;
if(MASK_SET(mask,field)) {
tmp_size = decode_string(data->shortname,ptr);
size += tmp_size; :
ptr += tmp_ size;
}
eélse data->shortname([0] = '\0"';
field++;
if (MASK_SET (mask, field}) ({
tmp_size = decode_string(data->xref,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->xref{0] = '\0';
field++;
if (MASK_SET (mask, field)) {
tmp size = decode_string(data->orig_xref,ptr);
58

size += tmp_size;
ptr += tmp_size;
} .
else data->orig xref([0] = '\0';
field++;
if (MASK_SET (mask, field)) {
tmp_size = decode_string(data->chxref,ptr);
size += tmp_size;
ptr += tmp_size;
}
else data->chxref[0] = '\0';
field++;
if (MASK_SET (mask, field)) {
tmp_size = sizeof(data->latfixed):
memcpy (&data->latfixed, ptr, tmp size);
size += tmp_size; h
ptr += tmp_size;

}

field++;
if (MASK_SET (mask, field)) {
tmp_size = sizeof(data->lngfixed);
memcpy (&data->lngfixed, ptr, tmp size);
size += tmp size; B
ptr += tmp_size;

}

field++;
if (MASK_SET (mask, field)) {
tmp _size = sizeof(data->jtn);
memcpy (&data->jtn,ptr, tmp_size);
size += tmp_size;
ptr += tmp_size;

}

field++;
if (MASK_SET (mask, field)) {
tmp_size = sizeof(data->spare);
menmcpy (&data->spare, ptxr, tmp_size);
size += tmp_size;
ptr += tmp_size;
}

field++;
return(size);

}

int encode platform data(data,data ptr)
VtPlatformData data;

unsigned char *data_ptr;

{ .

int tmp_size,size=0;

unsigned int mask = 0,field = O;
unsigned char *ptr;

ptr = data_ptr;

tmp_size = sizeof (mask);

memcpy (ptr, &mask, tmp_size);
size += tmp size;

ptr += tmp_size;

tmp_size = sizeof(data.ftn);
memcpy (ptr, &data.ftn, tmp size);
size += tmp_size;

ptr += tmp_size;

59

/*

*/

for (i=0;i<VT_MAX RTN;i++) {

tmp size = sizeof (VtTrknum);

memcpy (ptr, & (data.rtn[i]), tmp_size) ;.
size += tmp_size;

ptr += tmp_size;

}

if (strlen(data.shipclass) > 0) {
tmp_size = encode_string(data.shipclass, ptr),
size += tmp_size;
ptr += tmp_size;

SET_MASK (mask, field);
}

field++;
if (strlen{data.shipclass) > 0) {
tmp_size = encode_string(data.name,ptr);
size += tmp_size;
ptr += tmp size;

SET_MASK(mask, field);

}
field++;
if (strlen{(data.trademark) > 0) {
tmp_size = encode_string(data.trademark,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK({mask, field);

}
field++;
if(strlen(data.type) > 0) {
tmp size = encode_string(data. type,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);

}
field++;
if(strlen{data.hull) > 0) {
tmp_size = encode_string(data.hull,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK(mask, field);

}
field++;
if (strlen(data.flag) > 0) {
tmp_size = encode_string(data.flag,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK(mask, field);
} ,
field++;
if(strlen(data.sconum) > 0) {
tmp_size = encode_string(data.sconum,ptr);
size += tmp_size:;
ptr += tmp_size;
SET_MASK (mask, field):

}
field++;
if(strlen(data.pif) > 0) {
tmp_size = encode_string(data.pif,ptr);
size += tmp_size; -

60

ptr += tmp_ size;
SET_MASK (mask, field);
}
field++;

if (strlen(data.ntds) > 0) {
tmp_size = encode_string(data.ntds,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);

}
field++;
if (strlen(data.di) > 0) {
tmp_size = encode_string(data.di,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);
}
field++;
if (strlen(data.callsign) > 0) {
tmp_size = encode_string(data.callsign,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);
}
field++;
if (strlen(data.uic) > 0) {
tmp_size = encode_string(data.uic,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK(mask, field);
}
field++;
if (data.quantity > 0) {
tmp_size = sizeof(data.quantity);
memcpy (ptr, &data.quantity, tmp_size);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);

}
field++;
if(strlen(data.home_base) > 0) {
tmp_size = encode_string(data.home base,ptr):
size += tmp_size;
ptr += tmp_size;
SET_MASK(mask, field);

}

field++;
if(data.db_type > 0) {
tmp_size = sizeof(data.db_type);
memcpy (ptr, &data.db_type, tmp_size);
size += tmp_size;
ptr += tmp_ size;

SET_MASK (mask, field);
}

field++;
if (strlen(data.db_num) > 0) {
tmp size = encode_string(data.db_num,ptr);
size += tmp_size;
ptr += tmp_size;

SET_MASK (mask, field);

61

} «
field++;
if(strlen(data.alert) > 0) {
tmp size = encode_string(data.alert,ptr);
size += tmp_size;
ptr += tmp_size;
SET MASK(mask field);

}
field++;
if(strlen(data.fcode) > 0) {
tmp_size = encode_string(data.fcode,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);
}
field++;
if(strlen(data.category) > 0) {
tmp_size = encode_string(data.category,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK(mask, field);

}
field++;
if(strlen(data.threat) > O) {
tmp size = encode_string(data.threat,ptr):;
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);
}
field++;
if(strlen(data.shortname) > 0) {
tmp size = encode_string(data. shortname ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);

}
field++;
if(strlen(data.xref) > 0) {
tmp_size = encode_string(data.xref,ptr);
size += tmp_size;
ptr += tmp_size;
SET_MASK (mask, field);

}
field++;
if(strlen(data.orig_xref) > 0) {
tmp size = encode_string(data.orig_xref,ptr);
size += tmp_size;
ptr += tmp size;
SET_MASK (mask, field);

}
field++;
if(strlen(data.chxref) > 0) {
tmp size = encode_string(data.chxref,ptr);
size += tmp_size;
ptr += tmp size;
SET_MASK (mask, field);

}

field++; :
if(data.latfixed > 0) {
tmp_size = sizeof(data.latfixed);

62

memcpy (ptr, &data.latfixed, tmp_size);
size += tmp_size;
ptr += tmp size;

SET_MASK (mask, field);
}

field++;
if(data.lngfixed > 0) {
tmp size = sizeof (data.lngfixed);
memcpy (ptr, &data.lngfixed, tmp_size);
size += tmp_ size;
ptr += tmp_size;

SET_MASK (mask, field) ;
}

field++;
if(data.jtn > 0) {
tmp_size = sizeof(data.jtn);
memcpy (ptr, &data.jtn, tmp_size);
size += tmp size;
ptr += tmp_size;

SET_MASK (mask, field);
}

field++;
if (data.spare[0] > 0) {
tmp_size = sizeof (data.spare);
memcpy (ptr, &data.spare, tmp_size);
size += tmp size;
ptr += tmp_size;

SET_MASK (mask, field);
}

field++;
tmp_size = sizeof (mask);
memcpy (data_ptr, &mask, tmp_size);
return(size);

int

generate_broadcast_message(event queue,message_body,number of events)
Event_Queue *event queue;

unsigned char **message body;

int number of_events;

{

unsigned char temp message[20000];

unsigned char *temp message ptr;

int event number =
int message_size =
int segment_size = 0;

unsigned int number_ of type of_ event;

unsigned char *ptr to_number of type of_ event;
int i;

o ol

’
4

temp_message ptr = temp message;

/*

fprintf (stdout, "Printing from encoder\n");
print_all_events (event_gueue,number of events);
*/

/* merge */

number of type_of event = 0;

63

ptr_to_number of _type_of event = temp _message_ptr;
segment size = 51zeof(un51gned int) ;
message_size += segment_size;
temp_message ptr += segment size;
for (event_number = 0;event number < number of events;event _number++)
{
if (event_queue[event _number] .merged > 0) {
#ifdef TESTING
fprlntf(stdout,"Encodlng merges in event $d\n", event number) ;
#endif
segment_size =
add_merge_message(temp_message_ptr,event_queue[event_number].merge_event
):
if (segment_size >0) {
fprintf (stdout, "Merge message size: %d\n", segment _size);
message_size += segment_size;
temp_message ptr += segment _size;
number_of type of event++;
}
else {
fprintf (stderr, "Exrror occurred adding Merge message\n")
}

}

méncpy (ptr_to_number of _type_of event, &snumber _of_type_of event,sizeof (un
signed int));

/* deleted */

number_ of type of event = 0;

ptr_to number of type of event = temp _message_ptr;

segment size = s;zeof(un51gned int);

message_size += segment size;

temp_message ptr += segment size;

for (event_number = 0; event_number < number of_ events;event number++)

{

if (event_ queue[event _number] .deleted > 0) {
#ifdef TESTING
fprintf (stdout, "Encoding deletes in event %d\n",event_number);
#endif
segment_size =
add_delete message(temp _message_ptr,event gueue[event _humber] .delete eve
nt) ;
lf(segment size >0) {
#ifdef TESTING
fprintf (stdout, "Delete message size: %d\n",segment_size);
#endif
message_size += segment_size;
temp message ptr += segment_size;
number_ of_ type of _event++;
}
else {
fprintf (stderr, "Error occurred adding delete message\n");

/* don't send any other updates on deleted track */

initialize _event (event_queue, event _number) ;

}

64

memcpy (ptr_to number of type_ of event, &number of type of event,sizeof(un
signed int));

/* deleted reports */
number_of_ type_ of_ event = 0;
ptr_to_number of type of event = temp message ptr;
segment size = sizeof(unsigned int);
message_size += segment_size;
temp message_ptr += segment size;
for (event_number = 0;event number < number of events;event number++)
{
if (event_qgueue[event_number].reports_deleted > 0) {
#ifdef TESTING
fprintf (stdout, "Encoding deleted reports in event $d\n",event number);
#endif
segment_size =
add_delete report _message (temp_message_ptr,event_queue[event number].rep
orts _deleted, event_queue[event number].delete_report events);
1f(segment_51ze >0) {
fprintf (stdout, "Delete Report message size: %d\n",segment size);
message_size += segment_ size; -
temp message_ptr += segment_size;
number of type of event++;
}
else {
fprintf (stderr, "Error occurred adding delete reports
message\n");
}
}
}

memcpy (ptr_to_number of type of event, &number of type of event,sizeof (un
signed int));

/* added reports */
number of type of event = 0;
ptr_to_number of type of event = temp message ptr;
segment_size = sizeof(unsigned int);
message_size += segment_size;
temp_message_ptr += segment_size;
for (event number = 0;event number < number_of events;event number++)
{
if(event_gueue[event_number].reports_added > 0) {
#ifdef TESTING
fprintf (stdout, "Encoding added reports in event %d\n",event number);
#endif
segment_size =
add_add report _message (temp message_ptr, event_queue[event_ number].report
s added event_queue(event_number].add report_events);
1f(segment_51ze >0) {
fprintf (stdout, "Add report message size: %d\n",segment size);
message_size += segment_size;
temp_message_ptr += segment_size;
number_of type_of event++;
}
else {
fprintf (stderr, "Error occurred adding add reports message\n");

}
65

}

memcpy (ptr_to number of type of event, &number of_ type of event,sizeof(un
signed . int)):;

/* changed tracks */

number of type of event = 0;

ptr_to_number of type of event = temp_message_ptr;

segment size = sizeof(unsigned int);

message_size += segment_size;

temp message_ptr += segment_size;

for (event_number = 0;event number < number_ of_ events;event number++)

{
if (event_queue[event number].track updated > 0) {
#ifdef TESTING
fprintf (stdout, "Encoding change to trkrec
$d\n", event_gueue[event_number].affected_trkrec);
#endif
segment’ size =
add_update_message (temp _message_ptr,event queue[event_number].update_tra
ck _event);
#ifdef TESTING
fprintf (stdout, "Encoded change to trkrec %d. Segment size =
$d\n", event number, segment_size);
#endif
if (segment_size >0) {
fprintf (stdout, "Update message size: %d\n",segment_size);
message_size += segment_size;
temp_message ptr += segment_size;
number of type of event++;
}

else {
fprintf (stderr, "Exrror occurred adding update message\n");

}
}

memcpy (ptr_to_number of type of event, &number_of type_of_ event,sizeof (un
signed int));

*message_body = malloc(message_size);
memcpy (*message _body,temp message,message_size);

#ifdef TESTING
fprintf (stdout, "Encoded message\n");
$endif

return (message_size);

}

int

parse_update message (temp_message ptr,received_events,number_ received_ev
ents)

unsigned char *temp message_ptr;

Event_ Queue *received_events;

int *number_received_events;

{

int size,tmp size;

unsigned char *tmp_ ptr;

66

VtTrackUpdateMsg new_event;

size = 0;
tmp_ptr = temp message ptr;
tmp_size = decode_header (& (new_event.track.hdr),tmp ptr);
#ifdef TESTING
fprintf (stdout, "parse: header size = %d\n",tmp_size);
fprintf (stdout, "new event trkrec = %d\n",new_event.track.hdr.trkrec);
#endif
size += tmp_size;
tmp_ptr += tmp_size;
tmp_size = decode_report(&new_event.track.ptrk.rpt, tmp ptr);
#ifdef TESTING
fprintf (stdout, "decoded report size = %d\n",tmp_size);
#endif
size += tmp_size;
tmp ptr += tmp_size;
switch(new_event.track.hdr.type) ({
case VtPlatformTrackType:
tmp size =
decode_platform data(&new_event.track.ptrk.data, tmp ptr);
size += tmp_size;
tmp_ptr += tmp_size;
break;
case VtEmitterTrackType:
tmp_size = sizeof(new_event.track.etrk.rad):
memcpy (&new_event.track.etrk.rad, tmp_ptr,tmp_size);
size += tmp_size;
tmp_ptr += tmp_size;
tmp size = sizeof (new_event.track.etrk.data);
memcpy (&new_event.track.etrk.data, tmp_ptr,tmp_size);
size += tmp_size;
tmp ptr += tmp_size;
break;
case VtAcousticTrackType:
tmp_size = sizeof(new_event.track.atrk.signa);
memcpy (&new_event.track.atrk.signa, tmp ptr,tmp_size);
size += tmp_size;
tmp_ptr += tmp_size;
tmp_size = sizeof(new_event.track.atrk.data);
memcpy (énew_event.track.atrk.data,tmp ptr,tmp size);
size += tmp size;
tmp_ptr += tmp_size;
break;
case VtLinkTrackType:
tmp_size =
decode link data(&new_event.track.ptrk.data,tmp ptr);
size += tmp_size;
tmp_ptr += tmp_size;
break;
case VtUnitTrackType:
tmp_size = sizeof(new_event.track.utrk.data);
memcpy (&new_event.track.utrk.data,tmp ptr,tmp_size);
size += tmp_size;
tmp_ptr += tmp_size;
break;
default: fprintf(stderr, "Unknown type updated\n");
}

#ifdef TESTING
67

fprintf (stdout, "tmp_size = %d\n",tmp_size);
#endif

#ifdef TESTING
fprintf (stdout, "Adding update event %d trkrec
%d\n",*number_received_events,new“event.track.hdr.trkrec);

#endif

add_update_track_event (received_events,new_event,number received events)
;
return(size);

}

void

parse_broadcast_message (message_body,message_size,received_events, number
_received _events)

unsigned char *message_body;

int message_size;

Event Queue *received events;

int *number received events;

{

unsigned char *temp message ptr;

int event number = 0;

int segment size = 0;

int remaining size;

unsigned int number of type of event;

unsigned char *ptr_to number of type of event;
int i;

temp message ptr = message_body;
remaining size = message_size;
#ifdef TESTING

fprintf (stdout, "Decoding merges\n");
#endif

memcpy(&number of _type_of_ event,temp message ptr sizeof (unsigned int));
segment_size = 51zeof(un51gned int);

remaining size -= segment_size;

temp _message ptr += segment_size;

for (i=0;i<number_of type of event;i++) {
- segment_size =
parse_merge message (temp message ptr,received events,number received_eve
nts);
if (segment_size >0) {
remaining size -= segment_size;
temp_message_ptr += segment_size;
}

else {
fprintf (stderr, "Error occurred decoding merge message\n");

}
}

#ifdef TESTING
fprintf (stdout, "Number of merges = %d\n",number_of_type_of_event);

#endif

#ifdef TESTING
fprintf (stdout, "Decoding deletes\n")
$endif

68

memcpy {(&number_ of type of event,temp message ptr,sizeof(unsigned int));
segment size = sizeof(unsigned int);

remaining_size -= segment_size;

temp message_ptr += segment_size;

#ifdef TESTING
fprintf (stdout, "Decoding %¥d deletes\n",number of_ type of event);
#endif -
for (i=0; i<number of type of event;i++) {
segment_size =
parse_delete message (temp_message ptr,received_events,number received ev
ents); -
if (segment_size >0) {
remaining size -= segment_size;
temp_message_ptr +=.segment_size;
}
else {
fprintf (stderr, "Error occurred decoding delete message\n");
} .
}
#ifdef TESTING
fprintf (stdout, "Number of deletes = %d\n",number of type of event);
#endif

#ifdef TESTING
fprintf (stdout, "Decoding deleted reports\n");
#endif

memcpy (&number of type of event,temp message ptr,sizeof(unsigned int));
segment_size = sizeof (unsigned int);

remaining size -= segment_size;

temp message ptr += segment_size;

for (i=0;i<number of type of event;i++) {
segment_size =
parse_delete_report_message (temp _message_ptr,received events,number rece
ived_events);
if (segment_size >0) {
remaining size -= segment_size;
temp_message_ptr += segment_size;
}
else {
fprintf(stderr, "Error occurred decoding deleted reports

message\n") ;
}
}
#ifdef TESTING
fprintf (stdout, "Number of deleted reports =
%2d\n", number_of type_of_event);
#endif '

#ifdef TESTING
fprintf (stdout, "Decoding added reports\n");
#endif

mencpy (&number of type of event, temp message_ptr,sizeof (unsigned int));
segment_size = sizeof (unsigned int);

69

‘remaining size —-= segment_size;
temp message ptr += segment_size;

for (i=0;i<number of_ type of event;i++) {
segment_size =
parse_add_report_message (temp_message_ptr,received events,number receive
d_events);
if(segment_size >0) {
remaining size -= segment_size;
temp message_ptr += segment_size;
}
else {
fprintf (stderr, "Error occurred decoding add_report message\n");
}
}
#ifdef TESTING
fprintf (stdout, "Number of added reports =
$d\n",number_of type of event);
#endif

#ifdef TESTING
fprintf (stdout, "Decoding changes\n")
#endif

memcpy {(&number of type of event, temp message ptr,sizeof (unsigned int));
'segment_size = sizeof (unsigned int);

remaining size -= segment size;

temp_message ptr += segment_size;

for (i=0;i<number of type_ of event;i++) {
segment_size =
parse_update_message (temp_message_ptr,received events,number received ev
ents);
if(segment size >0) {
remaining size -= segment_ size;
temp message_ptr += segment_size;
}
else {
fprintf (stderr, "Error occurred decoding update message\n");

}

}

#define NUM_STORED_MSNS 20

void

parse message(recelved message, received_size, from ip,header, received eve
nts,numbexr received events)

unsigned char *received . _message;

int received size;

struct sockaddr in from ip;

Message Header header;

Event Queue *received events;

int *number_ received_events;

{

int i,difference, found=0;

static unsigned short int last msn[NUM_STORED MSNS];
static char sources[NUM_STORED MSNS][BO]

#ifdef TESTING
fprintf (stdout, "Received message of type %d\n",header.message type);

70

fprintf (stdout, "parse message: From host:%s port:%d\n”,
inet ntoa (from_ip.sin_addr), ntohs(from_ip.sin_port));

#endif
for (i=0; i<NUM_STORED_MSNS;i++) {
if(!strcmp(sources(i],inet_ntoa(from ip.sin_addr))) {
difference = header.msn - (last_msn[i] + 1);
last _msn([i] = header.msn;
found = 1;
break;

}

}
if(!found) {
for (i=0;i<NUM_STORED MSNS;i++) {

if (sources[1i][0] == '\0"') {
sprintf (sources[i], "%s",inet_ntoa(from_ip.sin_addr));
last msn([i] = header.msn;
if (header.msn != 1) difference = header.msn;

fprintf (stdout, "First message recieved from
%$s\n",inet ntoa(from ip.sin_addr));
fprintf (stdout, "adding source %s in slot
$d\n",inet_ntoa(from_ip.sin_addr),i);
break;
}
}
}

fprintf (stdout, "Received msn %d from
$s\n",header.msn,inet _ntca(from_ip.sin_addr));

if(difference > 0) fprintf(stdout, "MISSING %d Messages from
$s\n",difference, inet_ntoa(from ip.sin_addr)):

switch (header.message_type) {
case 1:

parse broadcast message(received message,received_size,received events,n
umber_received events);
break;
default: fprintf(stderr,"Unknown message type %d
received\n", header.message_type);

}

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

REFERENCES

Kosuir, David R., IP Multicasting: The Complete Guide to
Interactive Corporate Networks, John Wiley & Sons, 1998.

Macker, Joseph P., Klinker, J. Eric,and Corson, M. Scott,
“Reliable Multicast Delivery for Military Networking”, URL

http://tonnant.itd.nrl . navy.mil/papers/RM/RM.html, 1996.

Miller, Kenneth C., Multicast Networking and Communications,
Addison Wesley Longman, 1999.

Petit, David G., “Solutions for Reliable Multicasting”,
Master's Thesis, Naval Postgraduate School, 1996.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

BIBLIOGRAPHY

1. Acharya, Arup, Bakre, Ajay and Badrinath, B.R. “IP
Multicast Extensions for Mobile Internetworking,” IEEE
INFOCOM '96, Volume 1 1996.

2. Aguilar, Lorenzo, “Datagram Routing for Internet

Multicasting,” ACM Computer Communications Review,
Volume 14, Number 2 1984.

3. Bernstein, Arthur J., “A Loosely Coupled Distributed
Sytem for Reliably Storing Data,” IEEE Transactions on
Software Engineering, Volume SE-11, Number 5 1985.

4. Deering, S.E, and Cheriton, D.E., “Host Groups: A
Multicast Extension to the Internet Protocol,” RFC-966,
1985.

5. Deering, Stephen E., “Multicast Routing in

InterNetworks and Extended LANs,” ACM Computer
Communications Review, Volume 18, Number 4 1988.

6. Deering, Steve, “Host Extensions for IP Multicasting,”
Request for Comments (RFC) 1112, Internet Engineering
Task Force (IETF), August 1989.

7. Floyd, S., Jacobson, V., McCanne, S., Liu, C.-G., and
Zhang, L., “A Reliable Multicast Framework for Light-

weight Sessions and Application Level Framing,” ACM
SIGCOMM, Aug 1995.

8. Grossglauser, Matthias, “Optimal Deterministic
Timeouts for Reliable Scalable Multicast,” IEEE INFOCOM
196, Volume 3 1996.

9. Halsall, Fred, Data Communications, Computer Networks,
and Open Systems, Addison-Wesley Publishing, 1992.

10.Kim, John C., Naval Shipboard Communications Systems,
Prentice Hall, 1995.

11.Koifman, Alex, Zabele, Stephen “RAMP: A Reliable
Adaptive Multicast Protocol,” IEEE INFOCOM '96, Volume
3 199s6.

12.Kosuir, David R., IP Multicasting: The Complete Guide
to Interactive Corporate Networks, John Wiley & Sons,
1598.

13.Lin, John C., Paul, Sanjoy “RMTP:A Reliable Multicast
Transport Protocol,” IEEE INFOCOM '96, Volume 3 1996.

75

14 .Macker, Joseph P., Klinker, J. Eric,and Corson, M.
Scott, “Reliable Multicast Delivery for Military
Networking”, URL ‘ :

1996.

15.Miller, Kenneth C., Multicast Networking and

Communications, Addison Wesley Longman, 1999.

16.Moy, John, “Multicast Routing Extensions for OSPF,”
Communications of the ACM, vol. 37 no. 8 Aug 1994.

17.0fek, Yoram, Yener, Bulent “Reliable Concurrent
Multicast from Bursty Sources,” IEEE INFOCOM '96,
Volume 3 1996.

.18.0'Neil, Patrick, Database-Principles, Programming,
Performance, Morgan Kaufmann Publishers, 1994.

19.Perkins, Charles E., Mobile IP: Design Principles and
Practices, Addison-Wesley Publishing, 1998.

20.Petit, David G., “Solutions for Reliable Multicasting”,
Master's Thesis, Naval Postgraduate School, 1996.

21.Pingali, S., Towsley, D., and Kurose, J., “A
Comparison of Sender-Initiated and Receiver-Initiated

Reliable Multicast Protocols,” ACM SIGMETRICS, May
1994.

22.8chulzrinne, H., Casner, S., Frederick, R., and
Jacobson, V., “RTP: A Transport Protocol for Real-Time
Applications,” RFC 1889, Nov. 1995.

23 .Tanenbaum, Andrew S., Computer Networks, Prentice
Hall, 1996

24 .Zakhor, Avideh, “Image and Video Compression”, IEEE
INFOCOM, 1996.

76

INITIAL DISTRIBUTION LIST

. Defense Technical INfOrmation Cemter.uueet ittt et ee e aanas

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

. Dudley KnoxX LibIary.........cocoiviiiiiiiiiiiiiiiiii e
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

o DI Dan BOGET.o
Chairman, Code CS

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

. Dr. Bert Lundy, Professorccoiiiiiiiiiiiiiiiii i
Computer Science Department Code CS

Naval Postgraduate School

Monterey, CA 93943-5000

Sdohn Jaia ... e
Head, Code D45 '

Space and Naval Warfare Systems Center

53540 Hull Street

San Diego, CA 92152-5001

. BOD StEPRENSOMN.eeiteiiieiieie ettt '
Space and Naval Warfare Systems Center Pacific D424 :

675 Lehua Ave.

Pear] City, HI 96782-3356

. Cheryl PUthaml.oueieiiii e e
OTH-T Program Manager Code D4123

Space and Naval Warfare Systems Center

53540 Hull Street

San Diego, CA 92152-5001

77

